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Why change?
Going Bayesian

Examples & implementation

Interpretation
Lack of flexibility
Näıve assumptions

Overview

Evolution

Tests → Models → Hierarchical models

Our tools to analyze data are much better now, but...

1. Collect and explore data

2. Run test/model

3. Check p-value
◦ p < 0.05→ stop and publish
◦ p > 0.05→ back to step 1

+ we still focus too much on step 3
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Big picture
The typical tools we use

Frequentist data analysis

Estimation
with uncertainty

Maximum likelihood
estimate + CI

OrdinalLogisticLinear

Hypothesis testing

NHST

Bayesian data analysis

Estimation
with uncertainty

Posterior distribution
+ density interval

OrdinalLogisticLinear

Hypothesis testing

Bayes Factor

+ Why should we change from Frequentist to Bayesian?
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Some issues with Frequentist statistics
Old stats

I Results either significant or not significant

◦ As stipulated by an arbitrary threshold (commonly α = 0.05)

I Focus on p-values instead of what really matters: effect sizes
◦ p-values are highly sensitive to sample sizes → p hacking

+ The “New Statistics” clearly helped
◦ From: Null Hypothesis Significance Testing (NHST)
◦ To: Estimation based on effect sizes, CIs (Cumming 2014)
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Some issues with Frequentist statistics
New stats

I Overall, Frequentist methods have important issues

Let’s check three of them:

◦ Counter-intuitive interpretation
◦ Lack of flexibility
◦ Näıve assumptions
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Non-intuitive interpretation

Frequentist approach:

A p-values: we get p(D|θ) under H0

B Confidence intervals: counter-intuitive interpretation

C Effect size is a point estimate (single value)

Bayesian approach:

A No p-values: we get p(θ|D)

B Credible intervals (e.g., HDI)1 → easy interpretation

C Effect size is a (posterior) distribution of credible values

1Highest Density Interval
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Lack of flexibility

Frequentist approach:

I We can’t really change what a test/model assumes

E.g.: Outliers often removed from dataset to enforce normality

E.g.: Homogeneity of variance: unrealistic and unchangeable

Bayesian approach:

I Model adapted to our needs

E.g.: Keep outliers; choose non-normal distribution2

E.g.: Variance is also estimated

2Cf. frequentist robust regressions.
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Näıve assumptions

Frequentist approach:

I Can’t incorporate what is known about a phenomenon

I Every study (model) “starts from zero”

Bayesian approach:

I Can be informed by priors

I Studies can feed from previous findings

+ Intuition

“Extraordinary claims require extraordinary evidence”3

3Laplace, but also Hume and Sagan
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Going Bayesian

Frequentist approach:

I Probability of data given parameter (under H0) → p(D|θ)

Bayesian approach:

I Probability of parameter given data → p(θ|D)

+ + meaningful: we’re interested in the parameter, not the data
I p(θ) calculated using Bayes’ Theorem:*

p(θ|D) =
p(D|θ)p(θ)

p(D)
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Example

I Assume two groups of learners

A mean score = 0.8, s = 0.5, n = 100
B mean score = 0.3, s = 0,5 n = 100

I Parameter of interest = difference of means = µB − µA

+ Estimate = -0.43, 95% HDI = [-0.56, -0.30] (no p-value)

I The most probable parameter value is -0.43

+ But we’re given an entire distribution of credible values

I We can also easily visualize this distribution with a plot
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Informative output
Posterior distribution + 95% HDI [-0.56, -0.30]

-0.75 -0.50 -0.25 0.00 0.25
μB−μA
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Interpretation

I Values closer to the peak are more credible given the data

-0.75 -0.50 -0.25 0.00 0.25
μB−μA

We can use the 95% HDI as a decision tool: (Kruschke 2015)

+ 95% HDI doesn’t include zero → 6= is statistically credible

◦ Note that 95% is an arbitrary number
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Flexibility

I Prior expectations incorporated in the model

◦ Realistic (we rarely start from absolute zero knowledge)
◦ Effective (helps the model focus on plausible parameter values)

I Normality is not necessary

◦ A set of distributions to choose from

I Variance is also estimated (more later)

◦ When do experimental groups have equal variance?
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L1-L2 transfer

I L1 as initial state (Schwartz and Sprouse 1996, White 2000)

+ Expect certain L2 deviations based on L1 grammar

E.g.: Spanish speakers learning English: penult stress bias

E.g.: Italian speakers learning French: pro-drop bias

Garcia The Advantages of Bayesian Statistics 15 of 22

http://guilhermegarcia.github.io


Why change?
Going Bayesian

Examples & implementation

Example I: L1-L2 transfer
Example II: Heteroscedasticity

Example I: L1-L2 transfer

+ We can add these biases to the model!
◦ We can even compare our model to a näıve model

And check which one best fits the data

E.g.: Spanish → English: p(penult) > 0.5

E.g.: Italian → French: p(drop) > 0.5

+ This also applies to universal biases: we rarely start from zero
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Variance matters

I We know that different groups often have different variance

+ A Bayesian model also estimates p(σ)

In the form of a complete posterior distribution
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E.g.: Three groups of students

120 obs (some test score)

Different x̄ : 5, 7, 9

+ Different s: 2, 4, 6
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Variance matters

I We know that different groups often have different variance

+ A Bayesian model also estimates p(σ)

In the form of a complete posterior distribution
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Frequentist model

I A 6= B: p < 0.05;

I CI = [0.58, 3.36]

Bayesian model

I 6= less credible More

I HDI = [-0.07, 3.95]
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Final remarks
5 advantages of a Bayesian approach

1. Priors incorporate theoretical assumptions (L1-L2 transfer)

2. Meaningful and intuitive interpretation

◦ p(θ|D) instead of p(D|θ) (under H0)
◦ Directly compatible with various theories of learning

3. Comprehensive output: posterior distribution

4. More flexibility with assumptions (outliers, U-shaped learning)

5. No p-values (avoids simplistic interpretations; NHST errors)
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Disadvantages?

1. Computationally demanding: here, 0.02s vs. 42s

2. Not widespread in our field(s) yet (journals, pee-review)

3. More flexibility and power require more technical knowledge

◦ But: getting more and more accessible
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Where to start?

I R, Python, Stata, Matlab

Kruschke’s↑ Doing Bayesian Data Analysis (+ intro papers)

McElreath’s↑ Statistical Rethinking (+ lecture series)

Gelman et al.’s↑ Bayesian Data Analysis (+ blog etc.)

Bayes + Applied Linguistics: Plonsky’s bibliography↑
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Thank you!
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Appendix i
Tools

R rstan, rstanarm, brms, rjags

Python PyStan

Stata

Matlab MatlabStan
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Appendix ii
Going Bayesian

I Calculating p(θ) not always computationally possible

+ Solution: sample from posterior using a sampler

I Currently, Stan↑ (but see also JAGS and BUGS)

Stan is a language for statistical modeling

I Fortunately, we don’t actually need to learn it*
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Appendix iii
Code

+ Models run: Score ∼ Group + (1 | Subject)
I Data simulation:

1 set.seed (2)

2
3 df = data.frame(Group = as.factor(rep(c("A", "B","C"),

4 each = 120)),

5 Subject = rep(paste("subject",

6 seq(1, 9),

7 sep = "_"),

8 each = 40),

9 Score = c(rnorm (120, 5, 2),

10 rnorm (120, 7, 4),

11 rnorm (120, 9, 6)))
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Appendix iv
Variance: Why the Bayesian model is superior

I More closely approximates empirical sampling distributions:

+ coefficients + residual standard error

I We still see the trend generated

+ But our certainty shifts (i.e., more conservative)

I In part because our Bayesian model is not conditional on H0:

it’s averaging across all possible values of σ2
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