ORTHOGRAPHY-INDUCED GRADIENT WEIGHT EFFECTS IN PORTUGUESE ACQUISITION BY L1 MANDARIN LEARNERS

Chao Zhou (Universidade de Lisboa), Guilherme D. Garcia (Université Laval; CRBLM)

72nd annual conference of the Canadian Linguistic Association (CLA), June 3–5 2025, McGill University, Montréal

Naïve L1 Mandarin speakers are sensitive to word-final syllable weight in the perception of Portuguese stress, which doesn't come from Mandarin

INTRO

- Portuguese (Pt) regular stress (L2)
 (> 70% lexicon; Garcia 2014)
- a. Heavy final syllable → final stress *jornál, carnavál* 'newspaper', 'carnival'
- b. Light final syllable → penult stress (PU) caválo, planálto 'horse', 'plateau'

Weight matters most in final position

- Mandarin stress (L1)? (Qu 2013)
- a) Weight is not sensitive to syllable shape (Duanmu 2007), but heavy syllables have longer duration

b) Perception of stress/prominence~ syllable duration ~ phonological weight

Research Question

Will L1-Mandarin be able to use durational difference to perceive Portuguese stress?

Yes: Cue-based transfer. Learners can (re)use acoustic correlates employed in their L1 to acquire a novel L2 structure (Francis et al. 2000; Escudero & Boersma 2004)

No: Stress deafness. Duration is not the main cue (e.g., pitch; Archibald 1997, Wang 2008)

EXPERIMENT 1

- Subjects: 21 L1 Mandarin with moderate English (LexTALE score = 30, SD = 7.23; 0-100 scale) and no knowledge of Pt
- Task: Auditory stress identification

- Stimuli: 60 Portuguese disyllabic pseudowords
 - PU: 10 LL, 10 LH N, 10 LH VV
 - Final: 10 LL, 10 LH N, 10 LH VV

	Penultimate	Final
10 LL	JOfo	joFO
10 LH_N	PAbem	paBEM
10 LH_VV	DAcai	daCAI
	harder	easier

RESULTS

Error bars represent standard errors (narrower) and bootstrapped 95% Cls (wider)

STATS

Bayesian mixed-effects regression:

Correct ~ stress location * weight + (stress location *
weight | participant) + (stress | item)

Model estimates:

Parameter	\hat{eta}	Est. Error	95% Crl
LH_VV:stressU	0.63	0.32	-0.01, 1.22
LL:stressU	-1.21	0.41	-2.05, -0.41

INTERIM DISCUSSION

- What could explain these results? Not the stimuli: acoustic analysis reveals no f0/duration/intensity/vowel quality patterns
- Duration: LH > LL, but not LH_VV > LH_N

Could results be driven by orthography (Ruiz 2002)?

EXPERIMENT 2

- Subjects: 95 L1 Mandarin with moderate English and no knowledge of Pt
- Task and Stimuli comparable to Exp 1
- Auditory vs. Auditory + Orth condition

RESULTS

Error bars represent standard errors (narrower) and bootstrapped 95% Cls (wider)

Mean accuracy for penultimate and final stress
Auditory + orthographic

Error bars represent standard errors (narrower) and bootstrapped 95% CIs (wider)

STATS

Model estimates:

Parameter	\hat{eta}	Est. Error	95% Crl
LH_VV:stressU	0.56	0.27	0.02, 1.08
LL:stressU	-0.74	0.29	-1.32, -0.16

Reversal in stress identification accuracy
Interaction contrast across experiments: LH_VV vs. LH_N

GENERAL DISCUSSION

- Listeners seem to be using syllable weight to identify Portuguese stress (1 and 2).
- This is reflected in their identification
 accuracy (LH_VV > LH_N > LL) and
 seems to be driven by orthography (2).
- Gradient weight: innate or sonority-driven?

