When transfer fails:

Positional bias and weight-sensitivity in English stress

Guilherme D. Garcia

Ball State University

guilhermegarcia.github.io

GALANA, 2018 Indiana University, Bloomington

Intro

- 1. 40% of world's languages WEIGHT-SENSITIVE (Ryan to appear) Heavier syllables are more likely to attract stress Pattern \mathcal{P} (stress) is affected by factor \mathcal{A} (weight)
- 2. General assumption in SLA: L1 transfer

(White 1989)

Helpful if L1 and L2 weight-sensitive

Intro

Today: what if more than one factor seem to affect $\ensuremath{\mathcal{P}}$

- Weight and position in English stress
- ► Two typologically distinct L1s: Portuguese & Mandarin

Factor \mathcal{A} : Weight

• English stress is partially determined by weight

■ Regular stress in non-verbs
Heavy penultimate syllable → penultimate (PU) stress
Light penultimate syllable → antepenultimate (APU) stress $a\underline{genda}$ vs. $Ca\underline{na}da$ arizona vs. America

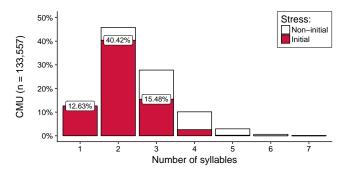
Different patterns for verbs and non-verbs

(Hayes 1982)

Background	Stress in English
Methods	Stress in Mandarin
Analysis	Stress in Portuguese

Factor \mathcal{A} : Weight

▶ % of words with APU stress in the CMU Dictionary


(cmudict)

Weight profile	PoS	%	Example
HLL	Adj	69.54	ábsolute
HLL	Ν	74.17	ábstinence
LHL	Adj	0	-
L H L	Ν	2.49	gálaxy
LLL	Adj	68.65	géneral
LLL	Ν	75.05	précedence

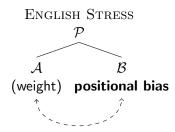
► Sample of 4,573 words (H = heavy; L = light)

Factor \mathcal{B} : Position

- 1. Most non-verbs \rightarrow PU or APU stress
- **2.** Most common words in English are **short** (\leq 4 syllables)
- Disyllables and trisyllables will often have initial stress

Background	Stress in English
Methods	Stress in Mandarin
Analysis	Stress in Portuguese

Factor \mathcal{B} : Position


Bias towards initial stress in English is well-known: (Cutler 2012) 50% polysyllabic words have initial stress (Cutler and Carter 1987) < 10% polysyllables with weak initial syllable

Stress as cue to word boundary in English Naturally useful to learners

Weight vs. position

Two possible predictors of stress location:

Weight and position highly correlated in common words

Could position conceal weight-sensitivity?

Stress in Mandarin

- Stress & weight are disputed in the language:
- a. No stress (Hyman 1977)
- b. Weight-insensitive
- c. Weight-sensitive*

(Feng 1995)

(Duanmu 1990: Qu 2013)

- * Like English, correlation between duration and weight
- * Unlike English, weight not sensitive to syllable shape

Stress in Mandarin

(Qu, 2013)

▶ Qu (2013, p. 71): four-way weight distinction

Based on durational differences across tones

Tone		Weight	Pitch
$\mathbf{T}_{1/2/3/4}$ in is	solation	Super-heavy	
Τ ₁ : <i>mā</i>	'mother'	Heavy	High level
Τ ₂ : <i>má</i>	'helm'		High rising
Τ ₄ : <i>mà</i>	'scold'		High falling
Τ ₃ : <i>mă</i>	'horse'	Light	Low falling
Τ ₀ : <i>ma</i>	'question marker'	Weightless	Low level

Stress in Portuguese

- Like English, Portuguese stress partially determined by weight: an<u>zól</u>, ca<u>cáu</u> vs. án<u>ta</u>, gáto 'hook', 'cocoa', 'tapir', 'cat'
- Different patterns for verbs and non-verbs (Wetzels 2007)
- ► Unlike English, Portuguese stress typically not initial (Most words → 3–4 syllables; penultimate stress)

 Background
 Stress in English

 Methods
 Stress in Mandarin

 Analysis
 Stress in Portuguese

Stress in Portuguese

Stress in non-verbs:

Heavy final syllable \rightsquigarrow final stressanzól, cacáuLight final syllable \rightsquigarrow penultimate stressánta, gáto

Light final and penultimate syllable \rightsquigarrow antepenultimate stress patético, ótimo 'pathetic', 'great'

Background	Stress in English
Methods	Stress in Mandarin
Analysis	Stress in Portuguese

Interim summary

In English, Mandarin, and Portuguese:

- stress more likely on longer/heavier syllables
- Is L2ers could transfer this correlation (weight-sensitivity)

But position can be a good predictor of stress location too

Could position conceal weight-sensitivity?

Background	Stress in English
Methods	Stress in Mandarin
Analysis	Stress in Portuguese

Interim summary

Collinearity between two variables

- 1. Syllable weight
- 2. Initial stress
- ► Take 3-syllable words

 $\mathsf{Light \ penult} \to \mathsf{initial \ stress}$

Heavy penult \rightarrow non-initial stress

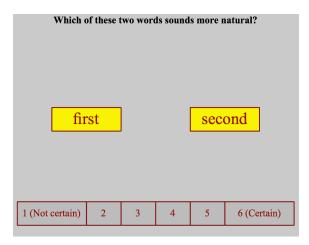
► If position is a more **salient** predictor...

 $\circ~$ E.g., Tolerance Principle

(Yang 2016)

Methods

Experiment

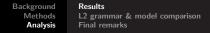

Forced-choice task using Praat (Boersma and Weenink 2019)
 3-syl nonce words (English) auditorily presented (N = 180)
 Response + certainty level (1–6) + reaction time

LLL	HLL	LHL
[prı.ta.rək]	[nar.pɛ.lət]	[da.sɛŋ.kəl]
[la.prɛ.sən]	[praŋ.kɛ.mət]	[pɛ.traŋ.kəp]
[sa.pı.nər]	[krım.pɛ.dən]	[tı.prɛs.dəl]

Participants: En (n = 13), Ma (n = 24), Pt (n = 25)
 Upper-intermediate to advanced adult L2ers

Methods

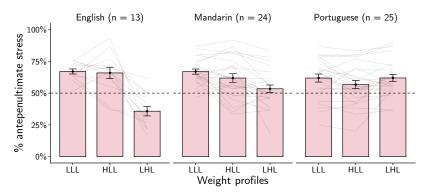
Experiment


Statistical analysis

Bayesian logistic regressions (multilevel)
 APU ~ weight + (1 + weight | subj) + (1 | item)
 weight = {<u>LLL</u>, HLL, LHL}

Three models:

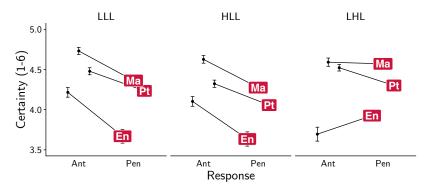
a. NaïveNo a priori assumptionb. WeightWeight assumed to be transferredc. PositionPosition assumed to drive responses


Once we observe the data, which model has the best fit?

Results

Response patterns

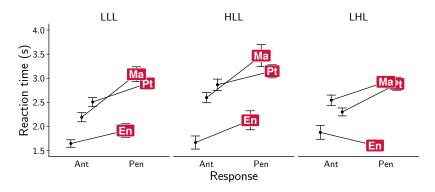
- ▶ Only controls favor APU stress < 50% in LHL words
- ${\tt IS}~L2ers:~APU~stress > 50\%~regardless~of~weight~profile$
 - What we would predict if position > weight



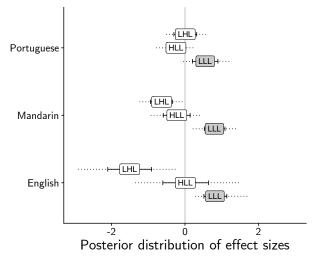
Results

Certainty

- \blacktriangleright Controls' certainty aligned with weight-sensitivity
- L2ers overall more certain about APU stress

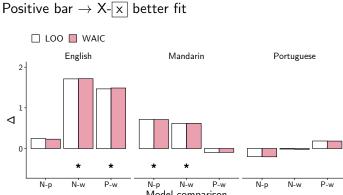


Results


Reaction time

- ► Controls' RT aligned with weight-sensitivity
- ${\tt IS} L2ers$ overall faster when choosing APU stress

Results L2 grammar & model comparison Final remarks


Statistical analysis (naïve models)

Background Results Methods L2 grammar & model comparison Analysis Final remarks

Model comparison

N(aïve), P(osition), W(eight)

Background Results Methods L2 grammar & model comparison Analysis Final remarks

Conclusion

- L2ers are not using weight consistently Instead, they favor initial stress across the board
 L2ers' certainty and reaction time aligned with responses

Weight-sensitivity doesn't seem to have been acquired

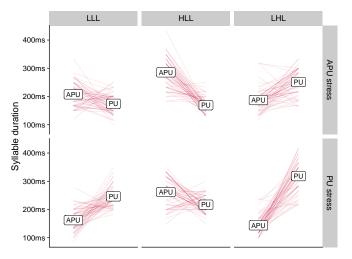
- I.e.: Not robust enough to be generalized by L2ers (E.g., Yang 2016) L2 lexicon size + low frequency of LHL (common) words
 - Weight model: no better fit for L2ers; better for natives

References I

- Boersma, P. and Weenink, D. (2019). Praat: doing phonetics by computer [Computer program].
- Cutler, A. (2012). Native listening: language experience and the recognition of spoken words. MIT Press, Cambridge, MA.
- Cutler, A. and Carter, D. M. (1987). The predominance of strong initial syllables in the English vocabulary. *Computer Speech & Language*, 2(3-4):133–142.
- Duanmu, S. (1990). A Formal Study of Syllable, Tone, Stress and Domain in Chinese Languages. PhD thesis, MIT, Cambridge, MA.
- Feng, S. (1995). *Prosodic structure and prosodically constrained syntax in Chinese*. PhD thesis, University of Pennsylvania.
- Hayes, B. (1982). Extrametricality and English stress. *Linguistic Inquiry*, 13(2):227–276.
- Hyman, L. (1977). On the nature of linguistic stress. In Hyman, L., editor, *Studies in Stress and Accent*, pages 37–82. Los Angeles: University of Southern California, Los Angeles.
- Qu, C. (2013). Representation and acquisition of the tonal system of Mandarin Chinese. PhD thesis, McGill University.

References II

- Ryan, K. M. (2019). Prosodic weight: categories and continua. Oxford University Press, Oxford.
- Wetzels, W. L. (2007). Primary word stress in Brazilian Portuguese and the weight parameter. *Journal of Portuguese Linguistics*, 5:9–58.
- White, L. (1989). Universal grammar and second language acquisition, volume 1. John Benjamins Publishing, Amsterdam.
- Yang, C. (2016). The price of linguistic productivity: How children learn to break the rules of language. MIT Press, Cambridge, MA.


Thank you!

Thanks to Heather Goad and Jiajia Su

This research was supported by FRQSC and SSHRC.

Appendix i

Syllable duration in stimuli

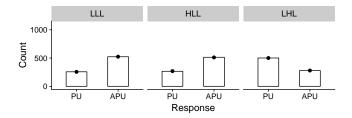
Appendix ii

Statistical models

 $\blacktriangleright \text{ Positive} \rightarrow \text{antepenultimate stress is favored (relative to LLL)}$ MODELS' ASSUMPTIONS AND ASSOCIATED PRIORS

		1. Naïve	2. Weight	3. Position
LLL	Effect: Prior:	– Flat	Positive $\mathcal{N} \sim (1,1)$	Positive $\mathcal{N} \sim (1,1)$
HLL	Effect: Prior:	– Flat	Neutral $\mathcal{N} \sim (0,1)$	Neutral $\mathcal{N}\sim(0,1)$
LHL	Effect: Prior:	– Flat	$\frac{\textbf{Negative}}{\mathcal{N} \sim (-1,1)}$	$\frac{\textbf{Neutral}}{\mathcal{N} \sim (0,1)}$
			transfer	no transfer

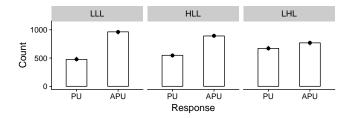
Appendix iii


(Naïve) models' results

	GROUPS		
	English	Mandarin	Portuguese
LLL	0.82	0.80	0.56
95% HDI	[0.53, 1.11]	[0.53, 1.09]	[0.21, 0.91]
HLL	0.02	-0.22	-0.24
95% HDI	[-0.61, 0.68]	[-0.59, 0.15]	[-0.50, 0.02]
LHL	-1.51	-0.64	0.01
95% HDI	[-2.13, -0.93]	[-0.93, -0.35]	[-0.28, 0.31]

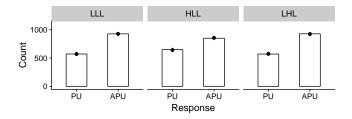
Appendix iv

Posterior predictive checks


English

Appendix iv

Posterior predictive checks


Mandarin

Appendix iv

Posterior predictive checks

Portuguese

