

REGULATING THE INTERACTION BETWEEN LEXICAL STATISTICS AND THE GRAMMAR: A NATURALNESS BIAS IN LEARNING WEIGHT

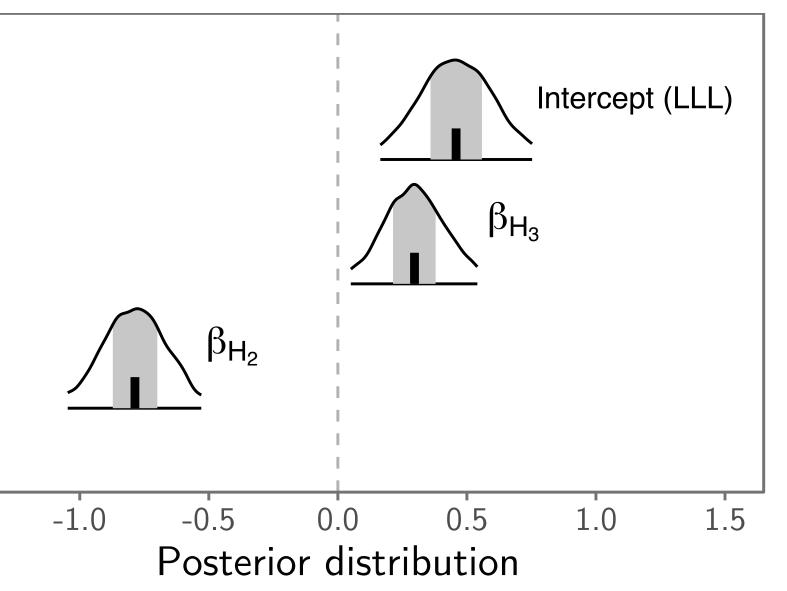
Guilherme D. Garcia o

1. INTRODUCTION

Can speakers acquire subtle phonological patterns in the lexicon?

2.	PORTUGUESE STRESS						
	Trisyllabic window Categorical weight: H = heavy, L = light						
	Traditionally: $X\hat{H}]_{Wd}$ else $\hat{X}X]_{Wd}$						
2.	Final (U) if σ is heavypomár 'orchard'Penultimate (PU) otherwisemacáco 'monkey'Antepenultimate (APU)patético 'pathetic'						
•	\therefore Weight effects are constrained to the $\sigma]_{Wd}$						
i. ii.	 But this does not capture sub-patterns [4]: i. Weight is gradient ii. All syllables in the domain are affected ii. Some negative effects, contra weight typology 						
	Lexicon: LLL > HLL						
2	ΟΠΕΩΤΙΟΝΙΟ						
	QUESTIONS How do speakers generalize weight effects?						
	How do they deal with a contradictory pattern?						

 Not all patterns learned are in the lexicon/input (*Poverty of the stimulus*) Not all patterns in the lexicon/input are learned (Surfeit of the stimulus) • E.g., Unnatural patterns \rightarrow harder to learn [1] What if such patterns contradict typology? • **E.g. 1:** Initial- σ faithfulness in English laryngeal alternations [2]: life \rightarrow lives Monosyllables > polysyllables in the lexicon **but** monosyllables ~ polysyllables in wug test • E.g. 2: Sonority sequencing in Polish (initial clusters) [3] Sonority plateaux > sonority rises in the lexicon **but** sonority rises favoured by children • **This study:** weight effects on antepenultimate stress in Portuguese: **negative** in the lexicon, **positive** in speakers' grammars LEXICAL BASELINE Notation: $\mathbf{H}_3 \, \mathbf{H}_2 \, \mathbf{H}_1]_{Wd}$ ► H₃ has a negative effect in the entire lexicon ▶ But is H₃ negative in the input? Examine posterior distribution of H_3 ii. Simulate smaller lexica and model H₃ iii. Model only frequent words \mathbb{R} All three methods confirm $H_3 < 0$ How about speakers' grammars? METHODS Auditory forced-judgment task (two versions) Native speakers of Br. Portuguese (n = 27, 32) • Nonce words (n = 240) with \neq weight profiles • Weight profiles: HLL, LHL, LLL; LLH (control) E.g.: $H_3 \rightarrow APU vs. PU$ stress in HLL vs. LLL Bayesian (hierarchical) logistic regression (Stan) **KEFEKENCES** [1] B. Hayes, P. Siptár, K. Zuraw, and Z. Londe, "Natural and unnatural constraints in Hungarian vowel harmony," Language, vol. 85, no. 4, pp. 822–863, 2009. [2] M. Becker, A. Nevins, and J. Levine, "Asymmetries in generalizing alternations to and from initial syllables," *Language*, vol. 88, no. 2, pp. 231–268, 2012. [3] G. Jarosz, "Defying the stimulus: acquisition of complex onsets in Polish," *Phonology*, vol. 34, no. 2, pp. 269–298, 2017. [4] G. D. Garcia, "Weight gradience and stress in Portuguese," Phonology, vol. 34, no. 1, pp. 41–79, 2017. Project materials available at http://guilhermegarcia.github.io/garcia2017.html. [5] B. Hayes and C. Wilson, "A maximum entropy model of phonotactics and phonotactic learning," Linguistic Inquiry, vol. 39, no. 3, pp. 379–440, 2008. [6] K. M. Ryan, "Gradient syllable weight and weight universals in quantitative metrics," *Phonology*, vol. 28, no. 3, pp. 413–454, 2011.


Ball State University o guilhermegarcia.github.io o

GLOW 41, Budapest, Apr 10–14 2018

gdgarcia@bsu.edu

6. ANALYSIS AND RESULTS **Experimental results:** Version A shown (n = 27). Posterior distributions + 50% and 95% HDI Antepenultimate ($\hat{\beta}_{H_3}$) & penultimate ($\hat{\beta}_{H_2}$) weight effects ► H₃, H₂, H₁: all positively affect stress \circ H₁ (control) not shown in plot Intercept (LLL) **Posterior distribution** $H_3 > 0$ (plot) • All values in log-odds • Positive values \rightarrow preference for APU stress • $H_2 > H_3$: LHL >> LHL & HLL > HLL • Results replicated in Version B (n = 32) -1.0 -0.5 1.01.5 0.0 0.5 \therefore Gradient weight & **positive** H₃ Posterior distribution Weights below learned with MaxEnt Grammar Tool [5]

stress.APU ~ weight + (1 + weight | speaker) + (1 | word)

What's an "equivalent" MaxEnt model?

 \mathcal{C} emulates the intercept in the models above (e.g., $\mathcal{C} = \{FTBIN, ALIGN(FT, R), NONFINALITY\}$); provides grammatical interpretation for positional bias represented by intercept

• Weights maximize observed probability (averaged across words within weight profiles): Mean observed p(HLL|HLL) = Predicted p(HLL|HLL)

_	w = 0.70	w = 0.49	w = 0.24			
HLL	WSP ₂	\mathcal{C}	WSP3	h(x)	$P^*(x)$	P(x)
	0	0	0	0	1	0.67
HĹL	0	1	1	0.73	0.48	0.33

© Weights are point estimates, *not* posterior distributions Standard MaxEnt implementation *not* hierarchical (i.e., no by-speaker/-word variation)

7. CONCLUSION

Speakers generalize weight gradience: LLH: U > PU LHL: PU > APU HLL: APU > PU ► They do not, however, generalize H₃ effects in the lexicon: rather, they **repair** such effects • Speakers' grammars are generalizing the expected effects given that Portuguese is weight-sensitive

 $LLL > HLL \rightarrow HLL > LLL$

Lexicon

Grammar

Crucially, the weight gradience in question is positionally defined • One way to capture this in a probabilistic grammar: positional WSP_n: $H_3 < H_2 < H_1$

s = 0.15

cf. [6]