Grammar trumps lexicon

Typologically inconsistent weight effects are not generalized

Guilherme D. Garcia

McGill University guilhermegarcia.github.io

NELS 47, Oct 14-16 2016 UMass, Amherst

Phonological learning

Can speakers acquire subtle phonological patterns in the lexicon?

- Not all patterns learned are in the lexicon
- Not all patterns in the lexicon are learned E.g.: Unnatural patterns \rightarrow harder to learn

(Poverty of the stimulus)

(Surfeit of the stimulus)

(Hayes et al. 2009)

What if such patterns contradict typology?

Phonological learning

Mismatches between lexicon and grammar

Typologically contradictory lexical patterns

► Initial- σ Faithfulness: 'life' \rightarrow 'lives' (Becker et al. 2012)

- $\circ~$ Monosyllables > polysyllables in the English lexicon
- $\circ \ \ {\sf Monosyllables} = {\sf polysyllables} \ {\sf in} \ {\sf wug} \ {\sf test}$

Sonority Sequencing Principle in initial clusters (Jarosz 2017)

- $\circ~$ Sonority plateaux > sonority rises in the Polish lexicon
- $\circ~$ Sonority rises favoured by children

Phonological learning This presentation

Typologically contradictory lexical patterns

- Weight effects on stress
 - Negative for antepenult stress in the Portuguese lexicon
 - Positive for antepenult stress in experimental data

Bottom line:

- Speakers learn subtle lexical (sub)patterns
- But not a pattern that contradicts typology
- Crucially: speakers generalise the opposite pattern

i.e., the expected pattern given the typology

(Q1)

(Q2)

Weight & stress

Weight-sensitive languages:

A Stress is affected by weight, i.e., rhyme shape
B Most cases: categorical weight: heavy (H) or light (L)
C Heavy syllables attract stress:

...Ĥ... better than ...Ĺ...

Weight effects in Portuguese...

- ... are gradient, not categorical (cf. B)
- ... are negative for antepenult stress: \acute{L} better than \acute{H} (cf. C)
- IN Do speakers ignore, generalise or repair these facts?

Background Stress in Portuguese Questions Lexical baseline Lexicon Sublexica Word frequency

Data and analysis

Design

Q1: Weight gradience

Q2: APU stress (H_3)

Final remarks Formalisation Phonological learning

Stress in Portuguese non-verbs

Traditional approaches: categorical

► Traditional generalisation: XĤ Wd else XX Wd

- 1. Stress is **final (U)** if final syllable is heavy pomár 'orchard'
- 2. Stress is **penult (PU)** otherwise
- 3. Antepenult (APU) stress is irregular patético 'pathetic'
- ... Weight effects are constrained to the word-final syllable

macáco 'monkey'

Stress in Portuguese Questions Lexical baseline

Stress in Portuguese non-verbs

Probabilistic approach (?)

- Categorical approaches miss important sub-patterns
- These sub-patterns can be captured in a probabilistic analysis
 In a comprehensive corpus of Portuguese (n=154,610):
- 1. Weight effects are $\textbf{gradient}:~H_3 < H_2 < H_1$
- 2. All three syllables in the domain are weight-sensitive
- Antepenult syllables show a negative effect:
 LLL is statistically better than HLL ← today's talk
 Inconsistent with the typology


Notation: $\mathbf{H}_3 \ \mathbf{H}_2 \ \mathbf{H}_1]_{Wd}$

Stress in Portuguese Questions Lexical baseline

Stress in Portuguese non-verbs

Probabilistic approach (?)

 σ = probabilisitic approach \blacksquare = actual data ... = categorical approaches

Stress in Portuguese Questions Lexical baseline

Questions

- 1. How do speakers' grammars generalise weight effects? Do they capture the subtle weight effects in the domain?
- 2. How do speakers deal with an inconsistent pattern? Do they ignore, generalise or repair APU effects?

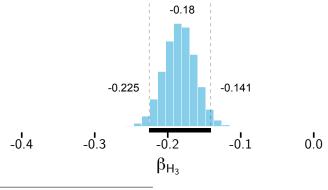
Background Stress in Portug Data and analysis Questions Final remarks Lexical baseline

Lexical baseline

Input vs. lexicon

▶ Is the negative H₃ effect realistically in the input?

- $\circ~$ If not, then speakers' lexica will have no negative effects
- $\circ~$ E.g., the negative effect could stem from rare words
- Three methods to evaluate how realistic the effect is:
 - 1. Examine distribution of credible effect sizes
 - 2. Simulate smaller sublexica
 - 3. Model \approx 20,000 most frequent words only


Background Stress Data and analysis Questi Final remarks Lexica

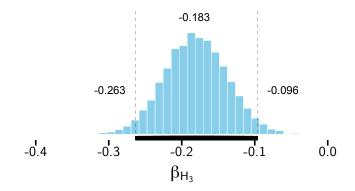
Stress in Portugues Questions Lexical baseline

Lexical baseline: HLL vs. LLL

Entire corpus (n = 81,299): Markov Chain Monte Carlo simulation

- Posterior distribution with estimated mode and 95% HDI
- ► All credible effects of H₃ are **negative**:¹

¹Bayesian logistic regression (MCMC)


Background Stress Data and analysis Quest Final remarks Lexic

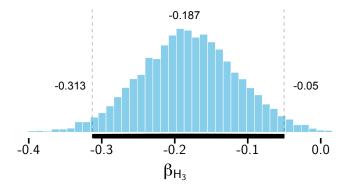
Stress in Portugues Questions Lexical baseline

Lexical baseline: HLL vs. LLL

Sublexica simulation ($n = 10,000 \times 25,000$ words [with replacement])

• Effect of H₃ is **negative** in all simulations:²

²Simple logistic regressions

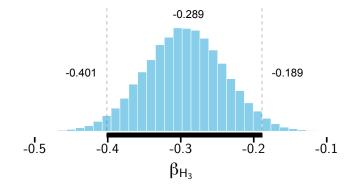

Background Stres Data and analysis Ques Final remarks Lexic

Stress in Portugues Questions Lexical baseline

Lexical baseline: HLL vs. LLL

Sublexica simulation ($n = 10,000 \times 10,000$ words [with replacement])

▶ Effect of H₃ is **negative** in 99.7% of all simulations:³


³Simple logistic regressions

Stress in Portuguese Questions Lexical baseline

Lexical baseline: HLL vs. LLL

Most frequent non-verbs (based on Tang 2012): n = 22,634

► All credible effects of H₃ are **negative**:⁴

⁴Bayesian logistic regression (MCMC)

Garcia (McGill)

Stress in Portuguese Questions Lexical baseline

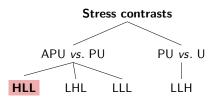
Lexical baseline: HLL vs. LLL

- Negative effect of H₃ is reliable in the lexicon
- This contradicts the typology of weight effects
- B How do speakers' grammars deal with such effects?

Experimental design

• Nonce words (n = 240) with different weight profiles

• Stimuli generated with script


(Garcia 2015)

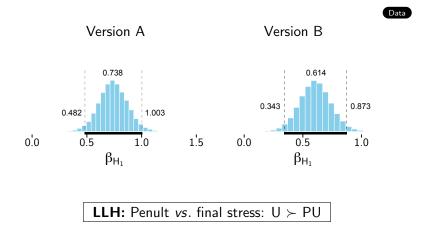
 $\circ~$ Filtered by phonotactic probability

Auditory forced-judgment task involving minimal pairs:

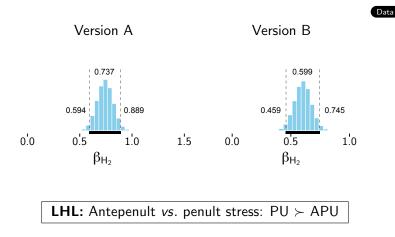
Same word in each pair; different stress position

"Which word sounds better to you?" E.g., HLL or HLL

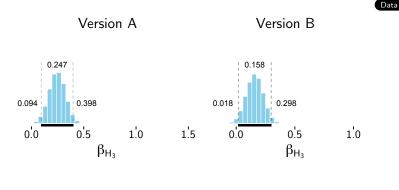
Experiment


- Stimuli recorded by phonetically trained native speaker (f)
- ► Version (A) 27 speakers
- ► Version (B) 32 speakers (replication of Version A)

All participants are native Brazilian Portuguese speakers


► Analysis:

- Bayesian Logistic Regressions (MCMC simulation)
- By-speaker random intercepts
- \circ stress \sim weight


Q1: How do speakers' grammars generalise weight effects? H₁ effects (LLH words): penult vs. final stress

Q1: How do speakers' grammars generalise weight effects? H₂ effects (LHL words): antepenult *vs.* penult stress

Q2: How do speakers' grammars deal with APU stress? H_3 effects (HLL words): antepenult *vs.* penult stress

HLL: Antepenult *vs*. penult stress: APU \succ PU

Summary

- How do speakers' grammars generalise weight effects? Do they capture the subtle weight effects in the domain?
 Yes: H_{3<2<1} all affect stress
- 2. How do speakers deal with an inconsistent pattern?

Do they ignore/generalise/repair APU effects in the lexicon?

- $\circ \text{ Ignore} \rightarrow \text{HLL} = \text{LLL}$
- $\circ \ \ \mathsf{Generalise} \to \mathsf{\acute{LLL}} \succ \mathsf{\acute{HLL}}$
- $\circ \ \mathsf{Repair} \to \mathsf{\acute{H}LL} \succ \mathsf{\acute{L}LL}$
- IN H₃ positively affects APU stress

Contra lexical patterns, but consistent with weight typology

(cf. Becker et al. 2012)

Thoughts on representing weight effects

 $\mathsf{H}_{3<2<1}$ all affect stress

- Weight effects are gradient
- Crucially: they depend on position of σ in word (cf. Ryan 2011)
- Speakers are sensitive to this dependency
- ► WEIGHT-TO-STRESS Principle

(Prince 1983)

WSP_n

An unstressed heavy syllable in position n is penalised

Portuguese: $WSP_3 < WSP_2 < WSP_1$

Formalisation Phonological learning

Phonological learning

Final remarks

Can speakers acquire subtle phonological patterns in the lexicon?

- Not all patterns learned are in the lexicon (Poverty of the stimulus)
- Not all patterns in the lexicon are learned

(Surfeit of the stimulus)

- What if such patterns **contradict typology**?
- Image: Second secon

$$\acute{\mathsf{LLL}}\succ \acute{\mathsf{HLL}} \rightarrow \fbox{\acute{\mathsf{HLL}}}\succ \acute{\mathsf{LLL}}$$

Lexicon Grammar

References I

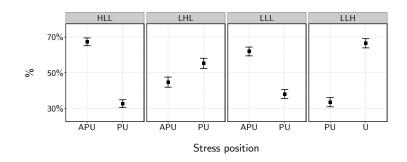
- Becker, M., Nevins, A., and Levine, J. (2012). Asymmetries in generalizing alternations to and from initial syllables. *Language*, 88(2):231–268.
- Garcia, G. D. (2015). Word generator: an R script for generating nonce words. Commented code available at http://guilhermegarcia.github.io/resources.html.
- Hayes, B., Siptár, P., Zuraw, K., and Londe, Z. (2009). Natural and unnatural constraints in Hungarian vowel harmony. *Language*, 85(4):822–863.
- Jarosz, G. (2017). Defying the stimulus: acquisition of complex onsets in Polish. *Phonology*, 34(2):269–298.
- Major, R. C. (1985). Stress and rhythm in Brazilian Portuguese. *Language*, 61(2):259–282.
- Moraes, J. a. A. d. (1998). Intonation in Brazilian Portuguese. In Hirst, D. and Di Cristo, A., editors, *Intonation systems: a survey of twenty languages*. Cambridge University Press.

Prince, A. (1983). Relating to the grid. Linguistic Inquiry, 14(1):19-100.

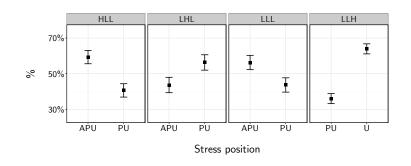
References II

- Ryan, K. M. (2011). Gradient syllable weight and weight universals in quantitative metrics. *Phonology*, 28(3):413–454.
- Tang, K. (2012). A 61 million word corpus of Brazilian Portuguese film subtitles as a resource for linguistic research. UCL Working Papers in Linguistics 24: 208–214.

Acknowledgments


Thanks to Heather Goad, Morgan Sonderegger, Natália Brambatti Guzzo, and the Montreal Language Modelling Lab (MLML).

This research is supported by FRQSC.


Thank you o Obrigado

Appendix i Data results: Version A (n = 27)

Back

Appendix i Data results: Version B (n = 32)

Back

Appendix ii Why is weight gradient in Portuguese?

Three important facts about stress in the language:

- 1. Stress is highly correlated with duration
 (Major 1985)

 ∴ heavy σs are usually longer
- 2. Unstressed vowels are reduced (Moraes 1998)
- 3. Secondary stress is only possible pre-tonically