Feet are parametric even in languages with stress

Guilherme D. Garcia¹ and Heather Goad²

¹Ball State University, ²McGill University

gdgarcia@bsu.edu • heather.goad@mcgill.ca

NELS 49, 2018 Cornell

Intro

Goal: To show that Portuguese has lexical stress, but no feet

- **1.** Word-minimality
- 2. Indeterminacy of foot types
- 3. Antepenultimate weight effects
- Despite surface similarities between Portuguese and English stress, the systems are formally very different

English Portuguese

English

Stress in non-verbs:

- Right-to-left moraic trochees + final syllable extrametricality agenda [∂_μ('d₃ε_μn_μ)_{Ft}⟨d∂_μ⟩]_{PWd}
 Canada [('kæ_μn∂_μ)_{Ft}⟨d∂_μ⟩]_{PWd}
- ▶ Binary feet also regulate minimal word size chemistry → [kɛm], *[kɛ] Elizabeth → [lız], *[lı]
- No subminimal (CV_μ) lexical words
 Truncation and hypocorization never result in (CV_μ)
 Lexical words must contain one binary foot (McCarthy and McCarthy and

English Portuguese

Portuguese

Stress in non-verbs:

- ▶ Right-to-left moraic trochees capture regular stress patterns *papel* [pa_μ('pε_μl_μ)_{Ft}]_{PWd} 'paper' *sapato* [sa_μ('pa_μto_μ)_{Ft}]_{PWd} 'shoe'
- $^{\hbox{\tiny ISS}}$ $\approx\!\!70\%$ of possible CV words are real words

English Portuguese

Portuguese

Stress in non-verbs:

- ► Regular stress: Ĥ] or X́L]
- Exceptional stress:
 - LĹ] (3%)
 X́H] (11%)
 - XXX] (12%)

(See Garcia 2017)

papél 'paper', sapáto 'shoe'

café 'coffee' *nível* 'level' *patético* 'pathetic'

This has led authors to propose different foot types:
 Trochees (Bisol 1992)
 Trochees and iambs (Lee 2007)
 Trochees, iambs, and dactyls (Wetzels 2007)

Proposal

Stress without feet

But two important differences:

- 1. Violations of word-minimality
- 2. Indeterminacy of foot type
- ▶ 1-2 challenge the presence of the foot in Portuguese

English Portuguese

Proposal

Stress without feet

Today: a **third** difference

- 3. Antepenultimate weight effects on stress
- Weight effects seal the fate against the foot in Portuguese and further motivate it in English

Weight effects in antepenultimate (APU) syllables

APU stress in 12% of Portuguese non-verbs
 Previous studies: exceptional extrametricality (Bisol 1992)

 $\begin{array}{ll} \textit{pat\acute{e}tico} \; \left[\mathrm{pa}_{\mu}({}^{\mathrm{t}} \mathrm{\epsilon}_{\mu} \mathrm{ti}_{\mu}) \langle \mathrm{ko}_{\mu} \rangle \right] & \quad \text{`pathetic' (LLL)} \\ \textit{fósforo} \; \left[({}^{\mathrm{t}} \mathrm{fo}_{\mu} \mathrm{s}_{\mu} \mathrm{fo}_{\mu}) \langle \mathrm{ro}_{\mu} \rangle \right] & \quad \text{`match (n)' (HLL)} \end{array}$

- Weight effects problematic in APU position: marked metrical structure unavoidable
 - $\circ \text{ } \overset{\bullet}{\text{HLL}} \rightarrow (\overset{\bullet}{\text{HL}}) \langle L \rangle \text{ (uneven trochee)}$
 - $\circ ~ \textbf{\acute{HLL}} \rightarrow (\textbf{\acute{H}}) L \langle L \rangle ~ (\text{medial unfooted syllable})$

English Portuguese

Weight effects in antepenultimate (APU) syllables Trisyllabic shortening

► English (Prince 1990; Hayes 1995) sane → sanity *[('se_µI_µ)m_µti_µ], [('sæ_µm_µ)ti_µ] serene → serenity *[sə_µ('ri_{µµ})m_µti_µ], [sə_µ('rɛ_µm_µ)ti_µ]

Shortening results in more complete parse of the word into feet

No similar process observed in Portuguese

Weight effects in APU syllables Predictions

If Portuguese builds feet: Should not find HLL ≻ LLL

I.e.: Weight-sensitivity should not be present in APU syllables

If Portuguese doesn't build feet:

Weight-sensitivity should not be blocked in APU σ s (weight effects present in final and penult σ s)

- ▶ Which profile HLL or LLL do native speakers favor?
- How do Portuguese and English compare?

Experimental design

- Two forced-choice auditory tasks involving nonce words Speakers of Br. Portuguese (n = 27) and English (n = 13) Minimal pairs of nonce words with different stress location
 - Antepenultimate vs. penultimate stress
 - Portuguese ($n = 240^1$) English (n = 180)

Three weight profiles: LHL, HLL, LLL

Pt:[gu.pla.ro] (LLL)[bron.da.le] (HLL)[bo.gren.da] (LHL)En:[ki.mɛ.sər] (LLL)[lm.sɛ.kəf] (HLL)[tɛ.prŋ.kəl] (LHL)

¹Also included penult vs. final stress

Experimental design

Experimental design

"Which of these two words sounds more natural?"

♦ ['kı.mɛ.sər]

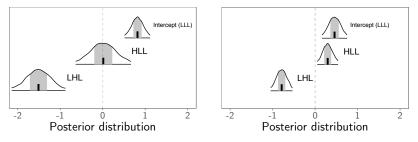
Experimental results and analysis

► Hierarchical logistic regressions using Stan in R (Carpenter et al. 2017)

```
response ~ weight +
(1 + weight | speaker) +
(1 | word)
```

By-speaker random effect + by-item random intercept

Results Discussion


Experimental results and analysis

Effects relative to baseline (intercept = LLL)

Posterior distr. + 50% and 95% Highest Density Intervals

English weight effects: $\dot{\text{HLL}} \sim \dot{\text{LLL}}$

Portuguese weight effects: $\dot{H}LL \succ \dot{L}LL$

▶ Positive distributions → preference for APU stress rel. to LLL

Discussion and conclusion

English: consistent with foot-based approach

- ${}^{\tiny \mbox{\tiny ISS}}$ Weight effects regulated by moraic trochees $+ \; \langle \sigma \rangle]_{_{\sf PWd}}$
 - \circ HLL \sim LLL
 - No subminimal words

Portuguese: consistent with **footless** approach

- IS Weight effects not regulated by footing
 - \circ $\dot{H}LL \succ \dot{L}LL$
 - Subminimal words

IN Are there other languages like Portuguese?

Discussion and conclusion

French

 Stress at the right edge of the phrase, not word (E.g., Dell 1984) [lə gRã gaR'sõ], *[lə 'gRã gaR'sõ] 'the big boy'
 Subminimal words freely tolerated Lexical words *lait* [lɛ] 'milk' Truncation *chimie* → [ʃi] 'chemistry' Hypocorization *Myriam* → [mi]

It has been proposed that French is footless (Jun and Fougeron 2000)
 Portuguese more like French than like English

Thank you!

Thanks to Natália Brambatti Guzzo and Jeff Lamontagne.

This research was supported by FRQSC and SSHRC.

References I

- Bisol, L. (1992). O acento e o pé métrico binário. *Cadernos de Estudos Lingüísticos*, 22:69–80.
- Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: a probabilistic programming language. *Journal of Statistical Software, Articles*, 76(1):1–32.
- Dell, F. (1984). L'accentuation dans les phrases en français. In Dell, F. and Vergnaud, J.-R., editors, *Les répresentations en phonologie*, pages 65–112. Paris: Hermann.
- Garcia, G. D. (2017). Weight effects on stress: lexicon and grammar. PhD thesis, McGill University.
- Hayes, B. (1995). *Metrical Stress Theory: principles and case studies*. Chicago: University of Chicago Press.
- Jun, S.-A. and Fougeron, C. (2000). A phonological model of French intonation. In Botinis, A., editor, *Intonation*, pages 209–242. Dordrecht: Kluwer.

References II

Lee, S.-H. (2007). O acento primário no português: uma análise unificada na Teoria da Otimalidade. In Araújo, G. A., editor, *O acento em português: abordagens fonológicas*, pages 120–143. São Paulo: Parábola.

McCarthy, J. and Prince, A. (1986). Prosodic Morphology. Manuscript.

- Prince, A. (1990). Quantitative consequences of rhythmic organization. *CLS*, 26(2):355–398.
- Wetzels, W. L. (2007). Primary word stress in Brazilian Portuguese and the weight parameter. *Journal of Portuguese Linguistics*, 5:9–58.