Stress and gradient weight in Portuguese

Guilherme D. Garcia guilhermegarcia.github.io

McGill University

WCCFL 33 | March 2015

Portuguese stress: previous analyses

- Weight effects on stress: only word-finally
- Falling diphthongs or coda segments \rightarrow heavy
- Weight-sensitivity is categorical
 - Word-final syllables: either H or L
- **Syllable-based** generalizations (rules and constraints)

See Araújo (2007) for a comprehensive review

Portuguese stress: previous analyses

- ▶ Weight effects on stress: only word-finally × Falling diphthongs or coda segments → heavy
 ▶ Weight-sensitivity is categorical ×
 - Weight-sensitivity is categorical
 Word-final syllables: either H or L
- ► Syllable-based generalizations (rules and constraints) ×

See Araújo (2007) for a comprehensive review

Today: A novel analysis

- \blacktriangleright Weight effects \rightarrow across the whole stress domain
- Weight-sensitivity is gradual
- Probabilistic interval¹-based account

Economy, accuracy, empirical motivation

¹Steriade 2012

Portuguese stress Intervals and syllables

ii

i

Questions Methods Analysis

iii

Summary Final remarks

Portuguese main stress

- **Non-verbs** \Rightarrow phonological factors + exceptional cases
 - Trisyllabic window: σσσ]_{PWd}
 ma.rí, ti.mo, ca.vá.lo, fa.ról

'maritime, horse, lighthouse'

- ▶ final and penult stress: (mostly) regular
- antepenult stress: irregular/unpredictable
- Weight effects only word-finally
- ► Verbs ⇒ morphological factors

(See Araújo (2007) for a review)

(Wetzels 2007)

Non-verbs

Regular patterns: 72% of the Portuguese Stress Corpus (Garcia 2014; Houaiss et al. 2001, n=154,083)

- ▶ Final stress (≈15%): papél 'paper'
 ▶ Penult stress (≈57%): caválo 'horse'
- Standard view: Heavy σ s only attract stress word-finally

Non-verbs

Irregular cases: 28% of the lexicon

$\delta\sigma\sigma$	$\approx 13\%$	pérola	'pearl'
$\sigma \dot{\sigma}_L$	$\approx \! 11\%$	café	'coffee'
$\delta \sigma_H$	\approx 4%	nível	'level'

Previous work: Marked stress, extrametricality, catalexis and morphological factors (Roca 1999; Araújo 2007)

Portuguese stress

Previous approaches:

- i weight domain = $\sigma_{rhyme} \#$
- ii weight is categorical, word-final and binary: H or L
- iii onsets do not contribute to weight

Possible issues:

- Antepenult stress restricted to XLL]_{PWd} words. Why? i.e., *XHL, *XLH, *XHH
- Recent studies on onset effects

(Gordon 2005, Topintzi 2010, Ryan 2014)

Do onsets affect stress in Portuguese? If so, how?

Intervals and syllables

Onsets and weight

- \blacktriangleright Prediction: no effect or a *positive* correlation CCÝ \geq CÝ
- Unexpected: $C\dot{V} > CC\dot{V}$, i.e., *negative* correlation
- ▶ Preview: This is found in the Portuguese lexicon (Houaiss et al. 2001)

Portuguese stress Intervals and syllables

i

Intervals and syllables

(LLL words)

Intervals and syllables

Intervals and syllables

(LLL words)

i

Final onset

Intervals and syllables

Defining intervals (Steriade 2012)

Facts are consistent with interval theory

Interval: rhythmic unit that spans from one V up to the next V: no constituency assumed

$$\mathsf{CVC}_{\sigma_2} \boxed{\mathsf{CCVC}_{\sigma_1}} \Rightarrow \langle \mathsf{C} \rangle \boxed{\mathsf{VCCC}_{\iota_2}} \mathsf{VC}_{\iota_1}$$

• More segments in one $\iota \Rightarrow$ longer duration \Rightarrow more weight

 Intervals argued to be the weight domain in unrelated languages: Finnish, Norwegian, Greek, Latin, Bhojpuri and Estonian

How about Portuguese?

ï

Questions

i How does weight-sensitivity affect stress in Portuguese? categorical or gradual? word-final or broader in the stress domain?

ii How do syllables and intervals differ in answering question i?

Methods

The Portuguese lexicon (Houaiss et al. 2001)

- Housiss Dictionary (n = 442,000)
- Non-verbs: n = 154,083
- Representativeness: spoken vs. written Portuguese two frequency corpora: similar proportions of stress patterns (penult > final > antepenult)
- What factors best predict stress position?

Methods

Factors: stress domain ($\sigma\sigma\sigma \mid \iota\iota\iota$)

ii

Methods

Data: final syllable by stress position

Onset

Nucleus

Coda

ii

Methods

Data: penult syllable by stress position

Onset

Nucleus

Coda

ï

Methods

Data: antepenult syllable by stress position

Onset

Nucleus

Coda

ï

Methods

Data: stress pattern by interval

3 (ant) 2 (pen) 1 (fin)

Methods

Variables predicting stress: Ordinal Regression* (clm() in R)

Syllable model	Interval model		
9 predictors $(3/\sigma)$	3 predictors (1/		
onset (y/n)	int.0		
nucleus (monoph-/diphthong)	int.1		
coda (y/n)	int.2		
(binary)			

Response: 3 > 2 > 1]_{Pwd}

Methods: Model evaluation

- ► Accuracy: What % of the lexicon is accurately predicted?
- Consistency: Which model is more theoretically consistent?
- ▶ Fit: Which model has a better fit (AIC, fit vs. df)?

ï

Analysis: Syllable model

In what positions does weight affect stress?

What has been argued:

Actual patterns:

CVC.CVC.CVC#

23 / 40

Analysis: Syllable model

Onset behaviour: Inconsistent with syllable theory

$$\mathsf{CVC--}\mathbf{C}_2\mathsf{VC}-\!\!-\!\mathbf{C}_1\mathsf{VC}\#$$

- 1. Final onsets \rightarrow penult stress
- 2. Penult onsets \rightarrow antepenult stress

$$\hat{eta} = 1.52 \quad p < 0.00001 \ \hat{eta} = 0.50 \quad p < 0.00001$$

Analysis: Interval model

- Longer intervals \rightarrow higher stress likelihood
- Weight gradience: between and within interval

CVCC—VCC—VC#

 $\begin{array}{ll} \texttt{int1} \rightarrow \texttt{final stress} & \hat{\beta} = -2.01 \quad p < 0.00001 \\ \texttt{int2} \rightarrow \texttt{penult stress} & \hat{\beta} = -0.25 \quad p < 0.00001 \\ \texttt{int3} \rightarrow \texttt{antepenult stress} & \hat{\beta} = 0.32 \quad p < 0.00001 \end{array}$

Question i: Weight gradience (regression weights by model)

Question ii: Syllables vs. intervals

Domain	Predictors	AIC	κ	Accuracy	
Syllable	9	186433.21	40.79	74.75%	
Interval	3	180035.58	15.38	78.29%	

Intervals:

- More accurate
- More empirically motivated
- More parsimonious

Summary of proposal

- ▶ Weight effects on stress are gradual, **not** categorical
- Intervals offer a better analysis of stress in Portuguese

- Onset effects are accurately captured
- Crucially: only one predictor, namely, weight
- ▶ **Probabilistic:** compatible with constraint-based grammars

Final remarks

- Weight effects in Portuguese are gradient
- Onset effects suggest that weight is computed in intervals
- Advantages of a probabilistic interval-based approach:
 - Economy, empirical motivation and accuracy
 - ► Nearly 80% accuracy *vs.* 72% regular cases
 - Only **one** positionally-defined predictor/constraint
- Probabilistic constraint-based implementation (E.g., MaxEnt)

Main references

Araújo, G. A. (Ed.) (2007). *O acento em Português: abordagens fonológicas*. São Paulo: Parábola.

....

Gordon, M. (2005). A perceptually-driven account of onset-sensitive stress. *Natural Language & Linguistic Theory*, 23(3), 595–653.

Hayes, B., & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry*, *39*(3), 379–440.

Houaiss, A., Villar, M., & de Mello Franco, F. M. (2001). *Dicionário eletrônico Houaiss da língua portuguesa*. Rio de Janeiro: Objetiva.

Prince, A. (1990). Quantitative consequences of rhythmic organization. *Cls*, *26*(2), 355–398.

Main references

Roca, I. M. (1999). Stress in the Romance languages. In H. van der Hulst (Ed.) *Word Prosodic Systems in the Languages of Europe*, (pp. 672–811). Berlin: Mouton de Gruyter.

....

Ryan, K. M. (2014). Onsets contribute to syllable weight: statistical evidence from stress and meter. *Language*, *90*(2), 309–341.

Steriade, D. (2012). Intervals vs. syllables as units of linguistic rhythm. Handouts, EALING, Paris.

Topintzi, N. (2010). *Onsets: suprasegmental and prosodic behaviour*. New York: Cambridge University Press.

Wetzels, W. L. (2007). Primary word stress in Brazilian Portuguese and the weight parameter. *Journal of Portuguese Linguistics*, *5*, 9–58.

iii

Many thanks to Heather Goad, Morgan Sonderegger, Kie Zuraw, Michael Wagner and Colin Wilson.

Thank you | Obrigado

guilherme.ca

ii iii

Appendix I: Syllable model

σ predictor	\hat{eta}	$e^{ \hat{eta} }$	$se(\hat{\beta})$	z value	p value
onset.fin	1.52	4.59	0.02	53.97	< 0.00001
nucleus.fin	-2.86	17.55	0.02	-137.99	< 0.00001
coda.fin	-4.68	108.10	0.02	-194.62	< 0.00001
onset.pen	0.50	1.65	0.02	23.75	< 0.00001
nucleus.pen	-1.32	3.75	0.02	-46.18	< 0.00001
coda.pen	-1.09	3.00	0.01	-63.85	< 0.00001
onset.ant	0.24	1.27	0.02	11.64	< 0.00001
nucleus.ant	-1.06	2.90	0.02	-40.50	< 0.00001
coda.ant	-0.02	1.02	0.01	-1.646	0.0999
$\theta = \{-1.64, 3.34\}$	AIC: 18	86433.21	Accura	cy: 74.75%	$\kappa = 40.79$

Appendix II: Interval model

ι predictor	\hat{eta}	$e^{ \hat{eta} }$	$se(\hat{eta})$	z value	p value
int1	-2.01	7.46	0.01	-196.60	< 0.00001
int2	-0.25	1.28	0.01	-35.33	< 0.00001
int3	0.32	1.38	0.01	43.82	< 0.00001
$\theta = \{-2.21, 2.63\}$	AIC: 180	035.58	Accura	cy: 78.29%	$\kappa = 15.38$

ii iii

Appendix III: Edge effects

 $[\langle C\rangle VC ~\textit{vs.}~[CVC \rightarrow No~onset~extrametricality~in~the~lexicon$

- Onsets at the left edge have a *positive* effect on stress. Why?
- ► Hypothesis: Parsing is *exhaustive*
- ► Test: words with 2, 3 and 4 syllables

If onsets have to be parsed...

Overall, penult onsets have a **negative** effect on penult stress.

How about disyllabic words? Do we find a null effect?

$$\begin{array}{ll} 2\sigma \; ([{\sf CV}...) & \hat{\beta} = \fbox{0.18} & p < 0.002 \\ > 2\sigma & \hat{\beta} = \fbox{-1.39} & p < 0.0001 \end{array}$$

Onsets have a **positive** effect at the left edge of the domain

Appendix IV: Constraint-based approach

An adaptation of the Weight-to-Stress Principle

m

(Prince 1990)

Let ι_u be an unstressed interval:

WSP_{ι_u} Assign one * to every segment in ι_u

Example: MaxEnt Grammar

(Hayes & Wilson 2008)

MaxEnt: Lexical modelling

- Lexicon = {different combinations of interval sequences}
- ► So, *amostragem* 'sampling' \subseteq {4-2-2} (VCCC-VC-VC)
- Assume inputs = unique sequences
- Each input includes a non-empty set of words
- Sets of words (inputs) have different stress patterns
- ▶ Problem: sets → *very* skewed lexical distribution

MaxEnt

Learned weights for all words in Portuguese

Constraint	WSP_3	WSP_2	WSP_1
Weight	0.00	0.27	0.83

....

- Weight gradience across the stress domain
- ► Antepenult interval: No weight effect learned
 - \blacktriangleright Lexical skewness: 37 out of 86 inputs \rightarrow 99% of the lexicon
 - Model treats each input equally

Summary Final remarks

ii iii

MaxEnt

Example

/VCCCVCVC/	WSP_1	WSP_2	WSP_3	H(x)	MaxEnt	P(x)	Freq(x)
[VCCC●VC● <mark>ÝC</mark>]	0	2	4	0.54	0.58	0.66	0.63
[VCCC● <mark>ÝC</mark> ●VC]	2	0	4	1.66	0.19	0.22	0.36
[<mark>ÝCCC</mark> ∙VC∙VC]	2	2	0	2.2	0.11	0.13	0.01